Stimulated single-fiber electromyography in wound botulism

1996 ◽  
Vol 19 (9) ◽  
pp. 1171-1173 ◽  
Author(s):  
Raul N. Mandler ◽  
Ricardo A. Maselli
Keyword(s):  
Author(s):  
Liling Cho ◽  
David L. Wetzel

Polarized infrared microscopy has been used for forensic purposes to differentiate among polymer fibers. Dichroism can be used to compare and discriminate between different polyester fibers, including those composed of polyethylene terephthalate that are frequently encountered during criminal casework. In the fiber manufacturering process, fibers are drawn to develop molecular orientation and crystallinity. Macromolecular chains are oriented with respect to the long axis of the fiber. It is desirable to determine the relationship between the molecular orientation and stretching properties. This is particularly useful on a single fiber basis. Polarized spectroscopic differences observed from a single fiber are proposed to reveal the extent of molecular orientation within that single fiber. In the work presented, we compared the dichroic ratio between unstretched and stretched polyester fibers, and the transition point between the two forms of the same fiber. These techniques were applied to different polyester fibers. A fiber stretching device was fabricated for use on the instrument (IRμs, Spectra-Tech) stage. Tension was applied with a micrometer screw until a “neck” was produced in the stretched fiber. Spectra were obtained from an area of 24×48 μm. A wire-grid polarizer was used between the source and the sample.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0232081 ◽  
Author(s):  
Anna Urciuolo ◽  
Elena Serena ◽  
Rusha Ghua ◽  
Susi Zatti ◽  
Monica Giomo ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Xia Gao ◽  
Xiaobin Hong ◽  
Sheng Wang ◽  
Xizi Sun ◽  
Liangming Xiong ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 722
Author(s):  
Enrico Wölfel ◽  
Harald Brünig ◽  
Iurie Curosu ◽  
Viktor Mechtcherine ◽  
Christina Scheffler

In strain-hardening cement-based composites (SHCC), polypropylene (PP) fibers are often used to provide ductility through micro crack-bridging, in particular when subjected to high loading rates. For the purposeful material design of SHCC, fundamental research is required to understand the failure mechanisms depending on the mechanical properties of the fibers and the fiber–matrix interaction. Hence, PP fibers with diameters between 10 and 30 µm, differing tensile strength levels and Young’s moduli, but also circular and trilobal cross-sections were produced using melt-spinning equipment. The structural changes induced by the drawing parameters during the spinning process and surface modification by sizing were assessed in single-fiber tensile experiments and differential scanning calorimetry (DSC) of the fiber material. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurements were applied to determine the topographical and wetting properties of the fiber surface. The fiber–matrix interaction under quasi-static and dynamic loading was studied in single-fiber pull-out experiments (SFPO). The main findings of microscale characterization showed that increased fiber tensile strength in combination with enhanced mechanical interlocking caused by high surface roughness led to improved energy absorption under dynamic loading. Further enhancement could be observed in the change from a circular to a trilobal fiber cross-section.


Sign in / Sign up

Export Citation Format

Share Document